

Forward Proton Detection at eRHIC

Alex Jentsch

Brookhaven National Laboratory

Why (very) forward proton detection?

- Exclusive elastic/diffractive events (e.g. DVCS).
 - Produce very forward protons outside the acceptance of the main detector.
 - Access to information related to Generalized Parton Distributions (GPDs).
- Also useful for veto of nuclear breakup events in conjunction with ZDC for neutron detection in e+A.

Example of a DVCS event. The scattered electron and photon are measured in the main detector, and the proton with forward proton detectors.

Kinematics and Measurement "How-To"

 $p_T = p' \sin \theta$

 $p'_L > 97\%$ of p_{Beam}

Detector -4 to 4 in η

→ 35 mrad from beam line

→ so not seen in main detector

→ need different detection technology

- Two-step detection process to achieve good acceptance.
 - Roman Pots at \sim 30 m from IP \rightarrow 0 5 mrad
 - Silicon sensors in first dipole (B0 dipole) after IP \rightarrow 5 25 mrad

Extracting physics information

Extracting physics information

Measurement

Physics observable (Impact parameter distribution)

Need to accurately extract:

- 1. The functional shape of the cross section (e.g. exponential vs. dipole).
- 2. The slope of the cross section.
- Requires good coverage in |t|.
- Requires good resolution to limit bin migration.
- High statistics required to properly constrain the fit in the high-|t| tails.

Sensors sit outside of beam pipe and detect scattered DVCS protons deflected by dipole field.

Roman Pots with DVCS Protons

DVCS simulations

- Simulations generated using MILOU [1].
- Machine detector simulations using GEANT/eicRoot.
 - All magnets in the hadron forward going direction.
 - Silicon sensors in BO and Roman Pots (material shape and thickness, pixel size, etc.)
- Samples generated for three beam energies.
 - 18(e)x275(p) GeV
 - 10(e)x100(p) GeV
 - 5(e)x41(p) GeV
- Sampled cross section with exponential shape and slope = 5.6 (slope chosen from HERA DVCS data).

DVCS simulations

- Simulations generated using MILOU [1].
- Machine detector simulations using GEANT/eicRoot.
 - All magnets in the hadron forward going direction.
 - Silicon sensors in BO and Roman Pots (material shape and thickness, pixel size, etc.)
- Samples generated for three beam energies.
 - 18(e)x275(p) GeV
 - 10(e)x100(p) GeV
 - 5(e)x41(p) GeV
- Sampled cross section with exponential shape and slope = 5.6 (slope chosen from HERA DVCS data).
- Note: the simulations were run with two different configurations from the accelerator group (except 41 GeV) one to maximize luminosity (high divergence), one to maximize acceptance (high acceptance).

- Angular divergence
 - Angular "spread" of the beam away from the central trajectory.
 - Gives some small initial transverse momentum to the beam particles.

Angular divergence

- Angular "spread" of the beam away from the central trajectory.
- Gives some small initial transverse momentum to the beam particles.
- Crab cavity
 - Can perform rotations of the beam bunches in 2D.
 - Used to account for the luminosity drop due to the crossing angle – allows for head-on collisions to still take place.

Angular divergence

- Angular "spread" of the beam away from the central trajectory.
- Gives some small initial transverse momentum to the beam particles.

Crab cavity

- Can perform rotations of the beam bunches in 2D.
- Used to account for the luminosity drop due to the crossing angle – allows for head-on collisions to still take place.

• $\beta(z)$ is the RMS transverse beam size.

$$\sigma(z) = \sqrt{\varepsilon \cdot \beta(z)}$$

- $\sigma(z)$ is the Gaussian width of the beam, ε is the emittance.
- General rule of thumb is to keep Roman Pot sensors at ~ 10σ distance from beam to limit exposure.

• $\beta(z)$ is the RMS transverse beam size.

 $\sigma(z) = \sqrt{\varepsilon \cdot \beta(z)}$

- $\sigma(z)$ is the Gaussian width of the beam, ε is the emittance.
- General rule of thumb is to keep Roman Pot sensors at $^{\sim}10\sigma$ distance from beam to limit exposure.
- High divergence (HD) beta functions tuned such that small beam (σ) at IP (higher luminosity), at the cost of larger beam at Roman Pots.

• High acceptance (HA) – essentially the opposite configuration as the

high divergence.

	18x275 GeV		10x100 GeV	
	НА	HD	НА	HD
RMS $\Delta heta_{ ext{ iny H}}$, (urad)	65	133	180	203
RMS $\Delta heta_{ee}$, (urad)	277	251	243	227
Luminosity 10 ³³ cm ⁻² s ⁻¹	0.94	1.93	4.07	4.35

The different beam configurations yield different values of $\sigma(z)$ and change the safe operating distance of the Roman Pots!

The high divergence configuration severely reduces the low p_t acceptance.

The high divergence configuration severely reduces the low p_t acceptance.

The high acceptance configuration improves the low p_t acceptance, but at the cost of a factor of 2 in luminosity.

The high divergence reduces low p_t acceptance. Magnet apertures restrict acceptance.

0.6 0.8 1 1.2 1.4 DVCS proton P₊ [GeV/c]

The high divergence reduces low p_t acceptance. Magnet apertures restrict acceptance.

The high acceptance configuration improves the low p_t acceptance, but at the cost of 10% in luminosity.

0.4

- Only one beam configuration for now.
- Acceptance gap still observed.
- Lower acceptance at high p_t .
- B0 plays largest role at this beam energy.

• Beam angular divergence -> $\Delta p_t \sim$ 40 MeV/c – Worse-case

- Beam angular divergence -> $\Delta p_t \sim 40 \text{ MeV/c}$ Worse-case
- Finite pixel size on sensor -> $\Delta p_t \sim$ 3 MeV/c to 20 MeV/c [50um x 50um to 1mm x 1mm].

- Beam angular divergence -> $\Delta p_t \sim 40 \text{ MeV/c}$ Worse-case
- Finite pixel size on sensor -> $\Delta p_t \sim$ 3 MeV/c to 20 MeV/c [50um x 50um to 1mm x 1mm].
- Smearing of vertex position due to bunch length projected onto transverse plane by crab cavity -> $\Delta p_t \sim 20 \text{ MeV/c}$ removable with precise (20 30ps) timing.

- Beam angular divergence -> $\Delta p_t \sim$ 40 MeV/c Worse-case $\frac{1}{2}$
- Finite pixel size on sensor -> $\Delta p_t \sim$ 3 MeV/c to 20 MeV/c [55um x 55um to 1mm x 1mm].
- Smearing of vertex position due to bunch length projected onto transverse plane by crab cavity -> $\Delta p_t \sim 20$ MeV/c removable with precise (20 30ps) timing.
- Total (worse-case): $\Delta p_t \sim$ 45 MeV/c.

Momentum Resolution – 100 GeV

	Ang Div.	20um pxl	55um pxl	500um pxl	Vtx Smear
Roman Pots Δp_t [MeV/c]	22	N/A	N/A	10	9
B0 Δp_t [Mev/c]	25	17	38	N/A	20

Total:

- RP: $\Delta p_t \sim 23$ MeV/c (worse case)
- B0: $\Delta p_t \sim$ 26 MeV/c (20 um pixels)
- |t|-reconstruction requires combined Roman Pots and B0 information.
- Still allows reconstruction of |t|-dist since data points exist on both sides of gap.

Momentum Resolution – 100 GeV

	Ang Div.	20um pxl	55um pxl	500um pxl	Vtx Smear
Roman Pots Δp_t [MeV/c]	22	N/A	N/A	10	9
B0 Δ p_t [Mev/c]	25	17	38	N/A	20

- RP: $\Delta p_t \sim 23$ MeV/c (worse case)
- B0: $\Delta p_t \sim$ 26 MeV/c (20 um pixels)
- |t|-reconstruction requires combined Roman Pots and B0 information.
- Still allows reconstruction of |t|-dist since data points exist on both sides of gap.

	Ang Div.	20um pxl	55um pxl	500um pxl	Vtx Smear
Roman Pots Δp_t [MeV/c]	14	N/A	N/A	10	10
B0 Δp_t [Mev/c]	17	13	25	N/A	10

• Total:

- RP: $\Delta p_t \sim 15$ MeV/c (worse case)
- B0: $\Delta p_t \sim$ 18 MeV/c (20um pixels)
- |t|-reconstruction requires B0 for majority of reconstruction.

	Ang Div.	20um pxl	55um pxl	500um pxl	Vtx Smear
Roman Pots Δp_t [MeV/c]	14	N/A	N/A	10	10
B0 Δp_t [Mev/c]	17	13	25	N/A	10

• Total:

• RP: $\Delta p_t \sim 15$ MeV/c (worse case)

• B0: $\Delta p_t \sim 18$ MeV/c (20um pixels)

|t|-reconstruction requires B0 for majority of reconstruction.

Some acceptance issues. Optimization of BO sensor layout in GEANT ongoing.

t-distribution

tDist

Entries

Notable Findings Thus Far

• The "high-acceptance" configuration crucial for low- p_t acceptance.

Notable Findings Thus Far

- The "high-acceptance" configuration crucial for low- p_t acceptance.
- There is a significant "grey" area of acceptance for both lower energy configurations.
 - Running simulations with potential additional sensors in the BO section.

Notable Findings Thus Far

- The "high-acceptance" configuration crucial for low- p_t acceptance.
- There is a significant "grey" area of acceptance for both lower energy configurations.
 - Running simulations with potential additional sensors in the BO section.
- Requirements for momentum resolution on B0 and RP sensors different.
 - B0 needs much smaller pixels.
- The total sensitive area needs to be roughly 20cm by 10cm to capture the full DVCS acceptance.

Filling the acceptance "grey" area.

100 GeV DVCS protons – Supplemental Sensors

41 GeV DVCS protons – Supplemental Sensors

B0 detector + supplemental sensors

- There are practical (space) considerations for the supplemental sensors.
 - Working with CAD to understand what space we will actually have between dipoles.
- Preliminary studies of B0 resolution completed much more sensitive to pixel size reconstruction of curved track.
 - Will need very small pixels (i.e. 20um x 20um) and a separate timing layer.
 - Need to understand required timing to apply vertex constraint.
- Will need to combine information from both B0 and Roman Pots to deliver full physics program.

Summary and Outlook

- Basic requirements for Roman Pots at eRHIC understood.
 - Acceptances studied room for improvement.
 - Need very precise timing (20-30ps).
 - p_t resolution < 50 MeV/c for all energies.
- B0 + potential additional sensors required.
 - Covers lower proton beam energies.
 - Different requirements on sensors.
 - More detailed studies/optimization underway.
- R&D underway on the sensor design (timing, pixel pitch, etc.) and optimized layout of Roman Pots and BO stations.
- Studies with e+A using BeAGLE underway.

Backup

Beam configurations

PARAMETERS	Proton
energy, GeV	275
rms_normemit.,h/v_um	4.6/0.74
rms_emittance,h/v_nm	15.8/2.5
emittance_y/emittance_x	0.159
beta,h/v_cm	90/4.0
IP_beam_size,h/v_um	119/10.1
IP_rms_ang_spread,h/v_urad	133/251

275 GeV – high divergence

PARAMETERS	Proton
energy, GeV	100
rms_normemit.,h/v_um	4.0/0.22
rms_emittance,h/v_nm	37.1/2.1
emittance_y/emittance_x	0.056
beta,h/v_cm	90/4.0
IP_beam_size,h/v_um	183/9.1
IP_rms_ang_spread,h/v_urad	203/227

100 GeV – high divergence

PARAMETERS	Proton
energy, GeV	275
rms_normemit.,h/v_um	4.2/0.90
rms_emittance,h/v_nm	14.4/3.1
emittance_y/emittance_x	0.214
beta,h/v_cm	340/4.0
IP_beam_size,h/v_um	221/11.1
IP_rms_ang_spread,h/v_urad	65/277

275 GeV – high acceptance

PARAMETERS	Proton
energy, GeV	100
rms_normemit.,h/v_um	3.5/0.25
rms_emittance,h/v_nm	33.1/2.4
emittance_y/emittance_x	0.071
beta,h/v_cm	102/4.0
IP_beam_size,h/v_um	184/9.7
IP_rms_ang_spread,h/v_urad	180/243

100 GeV – high acceptance

PARAMETERS	Proton
energy, GeV	41
rms_normemit.,h/v_um	1.9/0.4
rms_emittance,h/v_nm	43.6/10.3
emittance_y/emittance_x	0.236
beta,h/v_cm	90/7.1
IP_beam_size,h/v_um	198/27.1
IP_rms_ang_spread,h/v_urad	220/380

41 GeV